Tutorial 3

February 9,2017

1. Example 2 on P35: The Plucked String

For a vibrating string with the speed ¢, consider an infinitely long string which satisfies the wave

eqution:

Ru—cdPu=0 —oo<z<oo

Soppose that the the initial position is
b|x| 2| <
- — | <a
o(x) =

0 lz| > a

and the initial velocity ¢ (x) = 0 for all x.

The solution of this initial value problem by d’Alembert Formula is
1
u(, 1) = 5[0z + ) + 6z — ct)

See the Figure 2 on Page 36.

The effect of the initial position ¢(z) results a pair of travelling waves, one to the left 1¢(z + ct) and

another to the right %qb(:n -
this phenomenen by the graphs on page 36 clearly.

ct), at the speed ¢ and with half the original amplitude g. You can see

. Let ¢(x) = 0 and ¢(x) = 1 for |z| < a and ¢(x) = 0 for |x| > a. Sketch the string profile at each of

the successive instants ¢t = & ¢ 32 22 5a
2c’ ¢’ 2¢’ ¢’ ¢

Solution: By d’Alembert’s formula, the solution is

z+ct 1
u(z,t) = 20/ P(s)ds = 2—c[length of (x — ct,x + ct) N (—a,a)).

—ct

So we have
( 3a 3a
0 z € ( 7_?] [?»OO),
1 3a a 3a
2*(3—95) $€[277];
u(z,a/2c) = ¢ ¢ oa u(z,a/c) =
% T €| §a§]§
1 3a 3a a
%(54'@ €| 5 7—5],
5% 5a
O X 6 (_ P} 2 ] U [ 2 9 )7
1 ba a ba
2*(7 —z) we€ [5’ 3];
u(z,3a/2c) = &€ oCa u(z,2a/c) =
E VS [_572]7
i(‘ia t2) z€ [_‘ia -9,
2c" 2 27 27

2c

1
2—6(2a+ x)

(2a — )

—(3a — )

S R

2—6(3(1 + )

x € (—o0, —2a] U [2a, oc
z € [0, 2al;

x € [—2a,0];

x € (—00, —3a] U [3a,c
x € |a,3al;
x € [—a,al;

x € [-3a, —al;



0 x € (—o0, —6a] U [6a, 00);

1
%(661 —z) x € [4a,6al;
u(,5a/c) = a4 x € [—4a,4al;

Y

—(6 € [—6a, —4al;
20( a+x) x € |—6a,—4a
Here we omit the figures. [

. Stability for diffusion equation by maximum principle

Thoerem: Soppose u;(x,t),i = 1,2 are solutions of the following Initial-Boundary-Value-Problem:

du=kd?u 0<z<Il,0<t<T
u(z,t=0)=¢;(x) 0<z<lI
u(‘r = Oat) :gi(t)a u(z: = l7t) = hz(t) 0<t<T

Then

max fuy (2, ) — (2, )] < max{ max |¢1(x) — ¢a2(2)], max |91(t) — g2(t)], max |k (t) — ha(t)]}

Proof: Set v(x,t) = ui(z,t) — u2(z,t), the v satisfys
o (z,t) = kd2v(x,t)
v(z,t =0) = ¢1(x) — Pa2(x)
’U(I‘ = Oat) = gl(t) - 92<t)7 U(.%' = lat) = hl(t) - hQ(t)
Apply Maximum Principle to v, we have for any 0 < x < [,0 <t < T

< = — — _
v(w,t)_%%v(m’t) max{ongggl%(w) P2(z), 02‘52%91@ 92(t), max ha(t) — ha(t)}

< max{orgggl |p1(x) — ‘752(””)"0?%’% 91(t) — ga(t)], [nax |h1(t) — ha(t)[}

Apply Minimum Principle to v, we have for any 0 < x < [,0 <t < T

(. t) = minv(a,t) = min{ min, 61(z) ~ 6a(z), min, (t) ~ 92(8). min (1) — ha(t))

0<t<T 0<t<T
Then
_ < _ _ _
ol 1) < max{ gmax, éa(e) — 1 (2), max ga(t) — g1(0), max ha(t) — (1)}
< — — _
< ma{ max 61 (@) = daa)|: masx |91(6) = ga(0)], max (1) = ha(0)]}
Hence

< - - - .
max v(z, )] < max{ max [01(z) = da(a)|, masx |gr (1) = g2(8)|: mave [l (8) = ha(0)]}

. Prove the uniqueness of solution to

o=k 0<x<l,0<t
u(z,t =0) = ¢(x)
Opu(z = 0,t) = g(t), Oyu(x =1,t) = h(t)

by energy method.



Proof: Suppose u; and ug are two solutions of the above problem, then v = u; — u9 satisfies

ow=ko*v 0<z<I,0<t

v(z,t=0)=0

Opv(x =0,t) =0, Opv(z=1,t) =0
Multiplying d;v = kd?v by v and then integrating w.r.t = give that

d "1 !
— | Z|vPdx = / kd2vvdx

It follows from integration by parts and boundary conditions that

I ; I I
4 —|v|?dz = k‘@xvv‘ - / k(0,v)%dx = —/ k(0,v)%dz <0
dt 0 2 0 0 0

for any ¢t > 0. Then for any ¢ > 0

I b
/|v|2d:r§/ L (@, 0)2dz = 0
0 2 0 2

due to the initial condition. Hence v = 0 for any 0 < x < [, > 0 which completes the proof of the
uniqueness.



